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Abundance of invariant equations and properties for wave 
propagation in a space of arbitrary dimensions 

J Heading 
Department of Applied Mathematics, The University College of Wales, Penglais, 
Aberystwyth, Dyfed SY23 3BZ, UK 

Received 18 August 1983 

Abstract. This paper continues earlier work on the generalisation of the differential 
equations governing the propagation of electromagnetic waves in an inhomogeneous ionised 
plasma in a space of arbitrary (odd) dimensions. Using a convenient definition of curl in 
such a space, together with appropriate definitions of electric and magnetic field com- 
ponents, Maxwell’s first-order equations are defined together with the corresponding 
second-order wave equation involving the generalised curl curl operator. Various forms 
of these equations are discussed when a suitable plane of incidence is defined. The property 
of invariance is introduced, under which various forms of the equations and deductions 
therefrom are independent of the dimensions of the space in which propagation is defined 
to occur; both isotropic and anisotropic media are discussed. 

1. The nature of the investigation 

In spatial terms, physical problems are expressed in the space of three dimensions R 3 .  
This is, of course, completely satisfactory when the object of the mathematical investiga- 
tions is to explain observed phenomena or to predict the results of untried experiments. 
But the restriction of the mathematical exercise to the space R 3  means that the actual 
form of the associated equations as a function of dimensionality is fixed. For comparison 
purposes, there is no variation in the structure of the equations nor in the results 
deduced from them. An extension of the equations to a space of an arbitrary number 
of dimensions permits the examination of an overall structure; the form of any particular 
equation can then be seen to be a member of the structure. The same may be said 
about deductions: the actual physical results form an elementary base of a structure 
that often is of grand proportions. 

Particular interest is evoked when there is a simple pattern amongst the hierarchy 
of equations and results that arise. More particularly, a fundamental property of 
invariance may arise with respect to the dimensionality of the space in which propaga- 
tion is defined. We do not use the term ‘invariance’ in the context of tensor analysis 
relative to a space of given dimensionality; rather it is used of the form of equations 
and results that have the same properties in spaces of all dimensionalities (sometimes 
restricted to an odd number). The starting point is, of course, any appropriate 
fundamental physical equation in R 3 .  Generalisation may be possible in several 
directions; either all, or only some, of these suggested generalisations may throw up 
the property of invariance as the investigation proceeds. 
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These remarks follow from the author’s previous investigations into wave propaga- 
tion in inhomogeneous media, where understanding of the basic physical and mathe- 
matical processes has been enhanced by many excursions into spaces of higher 
dimensions, or by the use of differential equations and/or matrices of general order. 
Usually, an examination of the physical case itself gives no clue as to the properties 
of the generalisation. 

The fundamental equations governing electromagnetic wave propagation in 
isotropic and anisotropic stratified media may be found in texts by Bremmer (1949), 
Ratcliffe (1959), Ginzburg (1961) and Budden (1961). Many generalisations have 
already been considered by the present author over the past decade. Generalised 
reciprocity relations, and conditions for their existence, are considered in Heading 
(1973a, 1975a). General energy flux invariants are dealt with in Heading (1975b), 
while the actual forms of the equations under both isotropic and anisotropic conditions 
are derived in Heading (1976a). The present paper extends this latter work by 
generalising the equations in a different and more appropriate direction. Two-way 
transmission is considered in Heading (1977, 1978a, 1979), using both exact and 
approximate methods. A wide set of results is derived when propagation is governed 
by self-adjoint and Hermitian self-adjoint differential operators of general even order 
(Heading 1978b), while the separation of the medium approximately into non- 
overlapping domains is considered in Heading (1980). The expansion of a reflection 
coefficient in terms of a small parameter is examined in Heading (1981), showing how 
the corresponding results for a second-order equation are generalised. Finally, gen- 
eralised zilch flux and zilch density are generalised in two papers (Heading 1973b, 
1975d). 

In Heading (1976b), the analogy to the triple vector product in a space of arbitrary 
dimensions is discussed, the result being a vector, although the intermediate stage of 
the analogy to the vector product is not a vector. This means that, using the vector 
differential operator V in such a general space, there exists a wave equation involving 
curl curl (with curl not being defined as a vector). This generalisation to second-order 
equations is exploited in Heading (1975a, 1976a). The drawback to this, however, is 
that the operator curl (not being a vector) does not lead to suitable generalisations of 
Maxwell’s first-order equations for the electric and magnetic field components. The 
present paper is designed to overcome this difficulty. 

By means of a suitably defined generalisation of the operator curl, Maxwell’s 
first-order equations can be extended in form to a space of arbitrary (odd) dimensions. 
In turn, these lead to an appropriate second-order wave equation, the operator 
involving more terms that those appearing in the author’s papers (Heading 1975a, 
1976a). When a suitable plane of incidence is defined for incident waves, the set of 
equations is separated into three distinct types of equations in an isotropic medium, 
two of which generalise the familiar horizontally and vertically polarised waves in 
physical space. In fact, invariant forms emerge from the mathematical structure that 
is built up from the definitions, meaning that many of the results pertaining to physical 
space can be imported directly into the hierarchy pertaining to generalised space. The 
generalised complex Poynting vector is also defined, and it is shown that it is constant 
when the medium contains no energy-loss terms. Anisotropic propagation is discussed 
in a restricted way, corresponding to the circular polarisation properties of waves 
propagating in R perpendicular to the planes of stratification when the externally 
maintained magnetic field is also in this direction. 
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2. Results to be generalised 

When the time factor exp(iwt) is suppressed, Maxwell's equations in R 3  relating to 
an isotropic medium take the form 

curl e = -iwpoh, (1) 
curl h = iwsoe - iws,me, (2) 

where m denotes a function of position. When h is eliminated, we obtain the second- 
order equation 

(3) curl curl e = k2( 1 - m)e, 

where k2  = sOpOw2, namely, 

grad div e - V2e = kz(  1 - m)e. (4) 

In Heading (1975a, 1976a), the author has used this equation to define an appropri- 
ate generalisation to the second-order wave equation in R", namely 

VVTe-V'Ve = k2( 1 - m)e 

in matrix notation, T denoting the transpose, and V and e being n-vectors; in the 
anisotropic case, 1 - m is more generally replaced by the matrix I -  M. However, this 
does not permit an analogue to the magnetic field h to be defined in R", since in R" 
there is no first-order differential tensor operator corresponding to curl in R 3 ,  such 
that the operator, when operating on a vector, yields a vector. In Heading (1976a) 
only a pseudo-magnetic field with n - 1 components could be defined when the medium 
was stratified with respect to one coordinate. In Heading (1976b), the author con- 
sidered the analogue to the triple vector product in R", the half-way stage (that is, 
corresponding to the vector product in R 3 )  being introduced by means of a dual tensor; 
this idea is extended in the present generalisation. 

In this section, we now recall the equations in R 3  that are to be examined in 
connection with their generalisation to a space of an odd number of dimensions. With 
coordinates x ,  y, z, and with m defined to be a function of z alone, equations ( l ) ,  (2) 
and (4) admit separated solutions containing the x factor exp(-ikSx) and with no y 
factor. Equation (4) yields 

-a,.a,e,+a~e,.+ k2(1-m)e,=O, (5) 

(d t+a~)e ,+k2(1 -m)ey=0 ,  (6) 
-a,.d,e, +a:e, + kz( 1 - m)e, = 0, (7) 

where a/a, must be replaced by -ikS. Hence there are two independent modes of 
isotropic propagation, the e, field being horizontally polarised and the e,., e, field 
vertically polarised. 

Since h, a: arex -axe,, equations (5) and (7) can be combined to yield 

d~h ,+ [d ,m/ ( l -m) ]  d,h,+ k2(C2-m)h, =0, (8) 

d~e,.+{S2d,m/[(l - m)(C2-m)]}d,ex + k2(C2-m)ex = O .  

where C 2 =  1 - S 2  and d, 
yielding the more complicated equation for e,: 

d/dz. Again, using e, from (7),  we eliminate e, from (3, 

(9) 
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Equations (8) and (9) are the second-order equations for h, and e, in the vertically 
polarised mode. From (6), the equation for e, in the horizontally polarised mode is 

dfe ,+k2(C2-m)ey = O .  (10) 

When e is a vector in R", we have seen in Heading (1976a) that the form of 
equations (8),  (9) and (10) remains unchanged, namely the forms are invariants with 
respect to n. 

When M is a matrix in R 3  in the anisotropic case, it effectively is of the form 

M = aoZ + a I N  + a 2 N 2 ,  (11)  

where 

0 -n m 
N =  n 0 

( - m  1 

and n = (I, m, n )  denotes the direction cosines of the constant applied magnetic field. 
Since N3 = -N, no higher powers of N occur in M. This special form (1 1)  for M does 
not appear to have been recognised by writers on propagation in ionised anisotropic 
media, but it is essential for our generalisation. 

When S = 0 (vertical propagation), with 1 = m = 0, n = 1 (vertical magnetic field), 

so equation (3) yields 

d e, + k 2[ e, - ( a,  - a2)  e, + a e, ] = 0, 

dfe, + k2[e, - ale ,  - (ao- a2)e,] = 0. 

The combinations U = e, + ie, and U = e, - ie, yield non-simultaneous equations 

dzu + k 2 ( 1  - ao+a2-ia1)u =0 ,  

dzu + k 2 (  1 - a,+ az+ia,)u = 0. 

With respect to the x and y axes in R', the U and U fields are circularly polarised. 
The U field existing alone demands U = 0 and e, = ie,, which is the condition for circular 
polarisation, namely le,] = le,l and arg e, -arg e, = $7r. 

When the equations are generalised to R" according to the ideas developed in the 
author's (1976a) paper, it has been proved that the property of circular polarisation 
of many fields passes over into R". When n is even, one field is linearly polarised. 

3. An appropriate definition of curl in RZ"+' 

Let ei denote a vector in Cartesian space RZfl t l .  The rotation of orthogonal axes is 
governed by an orthogonal matrix, so no distinction exists between contravariance 
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and covariance; we shall therefore use suffixes throughout, except in S symbols. The 
summation convention is also used throughout the investigation. 

In R2"+', curl e is usually defined to be a skewsymmetric tensor of order two: 

Eil = alel -ale,, 

possessing n( 2n + 1) independent components. Its divergence 

a$, = ajaiel - ajajei 

= grad div e - V2e 

is a vector equivalent to the standard identity for curl curl e when n = 1. As we have 
observed, this is used in Heading (1975a, 1976a), but the corresponding magnetic field 
is artificial as already explained. 

A complete generalisation requires the introduction of a first-order differential 
tensor of order S operating on a tensor of order T, yielding by contraction a tensor 
of order S -  T. So that this operator of order S can similarly operate again on this 
contracted tensor, we require S - T = T, or T = I S ,  so S must be an even integer. In 
R3,  we have S = 2 ,  T =  1 (for a vector), so generally we may deliberately choose 
S = 2n, T = n for the space R2"+',  which will enable the skewsymmetry of the matrix 
N to be retained in the generalisation. 

In R2"+', we choose the analogue to the electric field to be a completely skewsym- 
metric Cartesian tensor e,j.,.f of order n (that is, skewsymmetric with respect to all 
pairs of suffixes), possessing ( 2 n  + l ) ! / n ! ( n  + l ) !  independent components. The 
analogue to the magnetic field is similarly chosen to be a completely skewsymmetric 
tensor hi, , , . f  or order n. 

The x2"+] axis will be regarded as 'vertical' for designation purposes only, and the 
plane of incidence will be defined by the x1 and x2,,+] axes. Relative to this plane and 
vertical axis, some of the components of ej j ,  and of hil.,.l are classified as possessing 
the property of horizontal polarisation, others as possessing the property of vertical 
polarisation, while the remainder possess the property of 'incident-plane' polarisation; 
this latter property cannot exist in R 3  when n = 1. Horizontally polarised components 
eil...l are those for which the n integers i j .  . . 1 do not include 1 and 2 n  + 1. The number 
of such independent components is the number of ways in which 2 n  - 1 numbers may 
be arranged amongst n positions, namely 2n-1Cn. A vertically polarised electric field 
will consist of a pair of electric components, namely and e2f l+l , j , , . f ,  where j . .  . 1 
is a combination of the integers 2 ,  3, . . . , 2 n ,  not involving 1 and 2 n  + 1. The number 
of such pairs is 2n-1 Cfl-l. The 'incident-plane' polarised components eij,..l are those 
for which both 1 and 2 n  + 1 are included in the suffixes; there are 2n-1Cfl-2 such 
components. This classification accounts for all components, since 

2n-1 c, + 22,-1 G I +  2 n - 1  Cn-2 = 2"+l  c,. 
We now use the usual permutation symbol ~ ~ ~ . . . ~ ~ b . . . ~  with 2 n  + 1 suffixes. 
The tensor operator curl is defined to be the skewsymmetric tensor operator of 

(14) 

where i j .  . . 1 and a b .  . . f denote any sets of n integers chosen from 1 , 2 , .  . . , 2 n  + 1. 

order 2 n  (of order one as far as differentiation is concerned): 

c i ]  . . .  fab  . . . f  ( 1 / n ! )  E ' I . , .  fpab. .  .f a p ,  
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This generalises the skewsymmetric tensor of order 2 in R 3 :  

Cij.,.lab,.,f operates on a skewsymmetric tensor of order n, producing by contraction 
on the symbols a b .  . . f another skewsymmetric tensor of order n. Thus in R 3  we have 

Ciaea = apea = (curl e ) i .  

4. Maxwell's equations generalised 

With the time factor exp(iwr) suppressed, we now define the isotropic generalisation 
to consist of the 2 ( 2 n  + l ) ! / n ! ( n  + l ) !  partial differential equations 

where the S symbol denotes the generalised Kronecker delta of order 2n, and the 
factor ( - 1 ) '  is introduced in anticipation of the subsequent results. When n = 1 ,  the 
Kronecker delta is merely the unit matrix of order three. Here, m is a function of 
position, such that m = O  defines what is to be understood as free space. 

First we carry out the summation implied on the right-hand sides of ( 1 5 )  and ( 1 6 ) .  
In ( 1 5 ) ,  for any particular choice of values i j . .  . 1, a b . .  . f must be restricted to these 
values, but the number of combinations will be n ! ,  and all allowable products SG,b:i .fhab,. ,f  
with these combinations will all possess the same sign. Then 

To obtain the second-order equation satisfied by the field cab...!, we eliminate hi,,.,f 
by repeating the operation Cxy...zij...l, giving 

C x y  ... zij  ... iCi, ... lab ...fe ab..,f = ( - l ) n + 1 k 2 ( 1  - m)exy.. .z.  

In terms of the differential operators a,, this equation is 

We replace E , /  !tab f by ( - l ) ' & a b  f ,  and use the identity 

E x y  .?si/ [ & a b  f r l ]  I n!Sii ;;; 

see Korn and Korn ( 1 9 6 1 ) .  Then equation ( 1 9 )  becomes 
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5. Reduction of the second-order wave equation 

In equation (20) ,  the suffix t must equal one of the superscripts xy . . . zs. If t = S, 

where s = 1 ,2 , .  . . , 2 n  + 1 but excluding xy . . , 2, we have 

n!  
2 n + l  

= c a fe  ,y...z (excluding s = xy . . . z) 
s = l  

=V2exy.. .2 -(a;+aZ,+. . .+a5)exy,..,. 

In the sum over t in (20), this suffix can now only equal xy . , . z. I€, €or example, t = x, 
with s = 1 , 2 , .  . . , 2n  + 1 but excluding xy . . . z, the contribution to the left-hand side 
of (20)  is 

s X Y . . . z S a  ab . . . f x  s a x e ab ... f (not summed over ab.  . . f, x) 

= ( - 1 )  h~~~bz~asaxeab. . . J  
= ( - 1 ) n s X Y . . . z S a  a e 

x y  ... zs s x y . . . z s  

= (- 1 ) n ~ s ~ , e y . , ,  zs ( s f x y . ,  . z )  

= ( - 1 ~ 8 ,  [ ~sey . , . z s  -axey.,.2x -ayey...zy - .  . . ] 
= (-l)naxasey...zs -(-1)na2xey...zx 

all s 

Similarly, for t = y the contribution to (20)  is 
n - 2  2 (-- 1)  n-l (- 1) fl-2a ,a,e xs.. .z - (- 1) n - l  (- 1 ) a y e  x y . .  . 

and so on. Hence the complete contribution from (21) ,  (22)  and (23)  is 

V2eXy.. . ,  - (a;+aZ,+.  . .+a3exy. . .z  -~xasesy . . . 2  + a  fexy. . . ,  -ayasexs...z +a~exy . , . z  -. . . 
= v 2 e  xy . . . ,  -axasesy...2 -ayasex,.., -. . .-azasexy...s, 

this being the generalisation of the expansion of curl curl e in R 3 ,  an expansion that 
we have not noticed before in the literature. 

Finally, equation (20)  becomes 

axasesy ... 2 + a y  asexs ... 2 +. . . + a  zasexy ... s - -v2exy. . .  2 = k 2 ( 1 - - ~ ) ~ X Y . . . 2 ?  (24)  
being the appropriate generalisation of equation (3) when n = 1.  The tensor h can 
then be determined from equation (10)  when the components of e are known. 

6. Vertical incidence 

We now regard the medium as stratified, in the sense that m is a function of x ~ , , + ~  
only, a direction regarded as vertical. Particular solutions of (24)  exist such that all 
components are functions of x ~ ~ + ~  only. Hence only a/axzn+, yields a non-zero 
derivative. 
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If in (24) the suffixes x y  . . , t do not contain 2 n  + 1, then evidently 
2 d2n+~exy. . . z  + k2(1 -m)exy . . . z  = O ,  

identical in form for all values of n ;  it is identical to the vertical incidence equations 
for e,  and e2 when n = 1. But if the suffixes x y .  . . t do contain 2n + 1, then 

0 = k2(1 - m)exy. . .z ,  

so generally exy,. ,z vanishes under these circumstances, identical to the property when 
n = 1 that the electric field has no component perpendicular to the stratifications. 
These are therefore invariant equations and properties. 

From (10) under these circumstances, with a general value of p, we have 

hi] . , , f  a Ci] . .  lab ...fe ob ... f 

- - E r ,  . . .  fsab ...fa seab ...f r 

so 

hi]. . I  a P-’ d2n+l eab ...f 

where a b . .  . f# ij.. . I, 2n + 1.  We define the suffixes of h to be complementary to 
those of e with respect to 2n + 1. If the boundary conditions are such that eab...f and 
hij,,,! (with complementary suffixes with respect to 2 n + l )  are continuous over a 
boundary separating two distinct homogeneous media, then it is obvious that the same 
Fresnel reflection and transmission coefficients emerge for vertical incidence in R2nt’  
as in R 3 .  These coefficients are therefore invariants, independent of n. 

This field satisfies the condition 

ei, ... lhij...i = 0 

for the special case of complementary suffixes, since all the h-components vanish. A 
rotation of axes about x2n+l yields 

e;]...h;]...I = 0 

where the components do not vanish. This is a generalisation of the fact that e and 
h are perpendicular in R3 (i) generally in a homogeneous isotropic medium, and (ii) 
when propagation is perpendicular to the stratifications in an inhomogeneous isotropic 
medium. 

7. Oblique incidence 

The plane of incidence is defined by the x1 and xantl axes. Separated solutions of 
equation (24) are sought, containing functions of x, and x ~ ~ + ~  only. The x, factor 
will be of the form exp(-ikSx,), with a/ax, = -ikS. 

Case (i). When the suffixes x y  . . . t do not contain 1 and 2 n  + 1, all the derivatives 
a,, a y , .  . . , a, vanish, yielding 

( ~ ? + ~ L + l ) e x y . , , z  + k2(1 - m)exy.. .z  = 0 ,  
or 
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being the equation for all horizontally polarised components (as defined in paragraph 
3).  They all propagate independently; there are 2n-1Cn such components. 

Case (ii). When x y . .  . z contain both 1 and 2 n + l ,  the left-hand side of (24) 
vanishes, yielding = 0. The 'incident-plane' polarised components therefore 
vanish; there are 2n-1 Cn-2 such components. 

Case (iii). In equation (24), let x = 1,  but with 2n + 1 excluded from the remaining 
suffixes. Then, since a y  = . . . a, = 0, 

a l ( ~ l e l y . . . z  + a  2n+le2n+l,  y . . . z ) - ( ~ ~ + ~ ~ , + l ) e l , . . z  = k2(1  - m)ely...z, 

-a l~2n+le2n+l ,y . . .2  +a22n+lely...z + k2(1 - m)ely...z = O .  

or 

(26) 

Similarly, when x = 2n + 1 but with 1 excluded from the remaining suffixes, (24) 
yields 

2 2  
a 2 n + l ( a l e l y . . . z  +~2n+le2n+l ,y . . .z)  - (81 +a2n+l)e2n+l,y...z 

= k2(1 - m)eZn+l,y ... 2 ,  

or 

- -~2n+l~le ly . . . z  +a:e2"+1,y.. 2 +k2(1-m)e2"+l.y...2 =o.  (27) 

These are the equations for the components of a vertically polarised field, of which 
there are 2n-1Cn-l pairs. 

Equations (26) and (27) are identical with equations ( 5 )  and (7) valid when n = 1,  
while equation (25) is identical with (6). Hence the forms of these wave equations 
are independent of n. This means that equation (9), valid when n = 1 for e,, is also 
valid for e l ?  , 2  in R2"+' .  

The magnetic component corresponding to the pair ely,.., and e2n+l,y...r is easily 
found. From ( l o ) ,  we have 

hij,..l Cij ... lab . . .fe a b  ...f 

& , j  . . .  fsab . . . fa  seab ...f 
- - E i  ~ . . f  1 a b  ...f aleab . . . j  + Eij  ... l ,Zn+l ,nb ...fa 2 n + l  eab ...f. 

Let ij.  . . 1 denote the suffixes arising from 1 ,2 ,  . . . , 2 n  + 1 when 1,  y, . . . , z,2n + 1 are 
deleted, implying that a b .  . . f must equal 1 y . . . z and 2n + 1 ,  y . . . z ;  hence 

h I E E i, ..I 1 , zn+  1 ,?... 81 ezn+ 1 .y . . .  + E +. i ,zn + 1.1 y. . .  a zn+  1 e y. ,. 

-a1e2,+1.,..2 + a  2n+lely ... 2, 

corresponding to h,. in R 3 .  Hence equation (8) is also quite generally the equation 

This investigation therefore shows that equations (8) ,  (9) and (lo),  valid in R 3  
(namely, for the horizontal magnetic and electric components in the vertically polarised 
mode, and for the horizontal component of the electric field in the horizontally polarised 
mode), and not special forms just for n = 1, but they are invariant for all n and generally 
applicable. Hence any deductions drawn from these equations, notably the reflection 
and transmission coefficients relating to a given model are also independent 
of n. The theory of the critical and Brewster angles is also invariant. 

for hij.,.,. 
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8. The generalised complex Poynting vector 

We consider the vector 

Ns = ( n !) -2  E sab.. .f rj ... / eab. ..f h r, ... / 

in its complex form, We combine (17) multiplied by h;. . ,  and (18) multiplied by e & . r ,  
yielding 

-(-l)flh$.. IEi ,  . . / sab.  .faseab. f +iwkln!hij.../h$.../ 
- *  e a b .  f & a b  ...f si, ... l a s h , /  ... I +iw&On!(l -m)eab. . . fe2b. . . f  = O ,  

with a convenient change of suffixes in the last two terms. The first E symbol is changed 
to (-l)fl&ab...fsi, . . . / .  The n! cancels if we now use only combinations of n suffixes instead 
of their permutations. To indicate this, we use the symbol (ij.. . 1)  to denote one 
particular combination instead of the n! permutations. Then 

- E(ab . . . f ) s ( r , . . . f ) (h~ , .  ./)ase(ab...f) + e?ab. f ) d s h ( i , . . . / l )  

+ i 4 . d q l  ,... & , j . . . / I  + ~ o ( 1  -m)etl,. . /~e&. . . i ) l=O~ 

We now take the real part of this equation (by forming the sum of a complex 
number and its conjugate), 

1 -- Z E ( a b  ...f ) s ( i i . . . / ) ( h ~ , . . . / ) a s e ( a b .  . f )  + h( i , . . / l a .&%b.  f )  

+ $ab .f,&h(, I... I )  + e(ab ...f )ash:: I... I l l  

+ w d m  m)e(ij. ., )e&.../) = O ,  

leading to 

-a s&(ab  ...f ) s ( r ,  ... I )  Re(e(ab ...f )h$j . . .  /)I + @&@(Im m ) e ( i ,  .I)e?i/.../J = 0. 

We interpret this is an energy balance equation; see Heading ( 1 9 7 5 ~  chap 3). In 
particular, if Im m = 0, 

- d s E ( , b . .  f ) s ( l / . . . / )  Re(e(ab...f)hzj.. I ) )  = 0. 

Using the incident plane as defined by the x1 and x2fl+l axes, we note that the 
operator dl  yields no contribution, since the factor exp(-ikSx,) disappears in 
e(ab ...f )hE,, , I ) *  implying that 

E t a b  ...f ) ,Zn+l , ( i  ~ . . .  I )  Re e(ab ... f)h?i, ... I 1  =constant, - 

where ab .  . . f and ij. . . I are complementary with respect to 2n  + 1. We interpret this 
result as (proportional to) a constant ‘energy flux’ along the x ~ , , + ~  axis, with Im = 0 
as the condition for no energy loss during the propagation process. It should be noted 
that the component e(ob...f) and h(i j , . , I )  are complementary components as previously 
defined. In R 3 ,  we note that 

Re(eah?) =Re(e,h$ - e2hT), 

proportional to the complex Poynting vector component along the x3 axis. 
It follows that all deductions made when n = 1 are applicable for general n, when 

the fields derived in 09 6 and 7 are used. These concern relationships between the 
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moduli of reflection and transmission coefficients, results that are given in Heading 
(1975c, chap 4) when n = 1, and in more comprehensive forms in Heading (1975b, 
1978b). These results are invariant forms and properties when applied to the general 
kinds of wave propagation discussed in this paper. 

9. The anisotropic case 

We now introduce a suitable anisotropic medium into equations (16) in place of m. 
This is achieved by generalising matrix M as used in R 3 ,  as stated in equation (11). 

In R2"+l,  let n, denote a constant unit vector with 2n + 1 components. Define the 
tensor 

- Nab fr] / - & a b  fsr] In,, 

and in keeping with ( l l ) ,  define a general susceptibility tensor M to be 

Mab f l ,  I = Q d ; b ' f  +QiNab f l l  I + (Q2/n! )Nab f x ,  z N x L  zll I +. . 

with as many products as may be necessary, (n!) '- '  appearing in the denominator of 
the term with rN's.  The Q, are functions of the one coordinate x ~ , , + ~  for horizontal 
stratification. 

The generalisation of the particular property given in R 3  when n = (0, 0, l), namely, 
a vertically imposed magnetic field, is achieved by writing n, = 0 except n2n+l = 1 ,  so 

implying that a b . .  . f and ij.. . 1 are complementary suffixes with respect to 2n+ 1. 
For propagation along the x ~ , , + ~  axis, (18) is replaced by 

yielding, as for vertical incidence in § 6, 

d:n+ lexy . . . z  + k2exy...z - k 2 ~ ~ e x y . . . z  

- k2[ (Ql /n ! )N , ,  ... rij ...I + ( Q 2 / ( n ! ) 2 ) N x , . . z a b . . . f N a b . . . f i l . . . ~  +. . . leij ... I .  

Now 

Nxy ... rrl ... /eij ... I = ~ x y .  .z,2n+ I ,ij... le i, ... / 

= n!se~ i l . , .~ )~  

where s denotes the sign of E , ~ . . . ~ , ~ ~ + ~ . ( ~ ~ . . . ~ ) ,  and ab . .  . f and ij. . . 1 are complementary 
with respect to 2n+ 1. The brackets may be removed from the suffixes of e, provided 
we understand that the same sequence of letters is implied in the sign s (with no 
summation). 

Similarly, 

Nxy. . .  rab ... f ab ... f i j  ... leij ... I = E x y  ... z,2n+ 1 .ab... f ab ... f ,2n+ 1 ,ij... I e i j  ... I .  (29) 
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Clearly, for given x y . .  . z, a b . .  . f must be complementary; moreover, ij.. . 1 is com- 
plementary to ab.  . . f ,  so must equal xy . . . z in some order. Hence (29) equals 

( n ! 12& x y  ... z,2n + 1 ,(ab.. .f) & ( a b  ... f ) , 2  n+ 1 . ( xy . .  . z ) e (  x y  ... z ) 

- - ( n  ! ) 2 ~ x y . . . z , z n + i , ( a ~ . , , j )  ( - 1  ) n g ( x y . . . z ) , 2 n + i  ,(ab...f)e(xy...z) 

= ( - I )  " ( n ! ) s2e xy .  ._ 

= (- 1 )" ( n  !)2exy...z. 

The differential equation becomes 

Starting with the a. term, the signs are 1 ,  s, (-l)", ( - l ) " s ,  1 ,  s, ( - l ) " ,  . . . , repeated 
in groups of four. 

Replacing exy...z by el j . , . l ,  and noting that the sign to  be introduced is E ~ ~ . . . ~ , ~ ~ + ~ , ~ ~ . . . ~  = 
( - l ) " s ,  we have 

d2n+lerj... l  + k2ei ,... I - k2aoeij ...I - k2(-l)n~alexy...z 

- 

2 

- k 2 ( - l ) " a , e ,  ,... - k2sa3exy...z - k2a,e ,  ,... I - .  . . = 0,  ( 3 1 )  

the successive signs attached to the a's being 1 ,  (-l)"s, ( - l ) " ,  s, 1 , .  . . , repeated in 
groups of four. 

Case (i). If s = 3tl with n even, the terms exy.. .z  in ( 3 0 )  correspond to eij.. .l  in ( 3 1 )  
in position, and uice versa. The combinations 

U = exy ... z + ei, ... 1 9  U = exy ... z - eij.. I 

yield non-simultaneous equations. 

but eIj, 
Case (ii). If s = +1 with n odd, the terms e x y .  .=  in ( 3 0 )  correspond to eii.,,, in ( 3 1 ) ,  

U = exy ... z -14 I] ... 1 

yield non-simultaneous equations. 
In case (i), exy...z = e ,  ,... I ,  exy. . . z  = - e i  ,... I for u-waves and u-waves respectively to 

exist alone. In case (ii), exy. . .z  = i e i  ,,.. exy.  , z  =+e,],, I for u-waves and v-waves respec- 
tively to  exist alone. 

This generalises what has been said about equations ( 1 2 )  and ( 1 3 )  when n = 1 
(odd). The question of polarisation (discussed in relation to equations ( 1 3 ) )  appears 
to be rather artificial, since the field components do not possess specific directions 
related to the coordinate axes except when n = 1 .  But if pseudo-orthogonal axes 
x ( x y . . z ) ,  x ~ ~ ~ . . . ~ )  are defined in a space of dimensions 2nCn, then with respect to these 
axes any pair of complementary fields is linearly polarised when n is even, and circularly 
polarised when n is odd in planes specified by two of these pseudo-axes. 

in (30) correspond to -exy. . . z  in ( 3 1 ) .  Hence the combinations 

= exy ... 2 +ie,  ,... 1 ,  

10. Conclusion 

We have shown how Maxwell's equations can be generalised so as to refer to a space 
of 2n + 1 dimensions, with the operations curl and curl curl having appropriate defini- 
tions. The second-order wave equations are formulated for the various isotropic modes 
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of propagation, while a particular form of anisotropic propagation is investigated to 
yield non-simultaneous equations that exhibit the properties of linear and circular 
polarisation. The main feature of the generalisation is that all the results are very 
similar to the physical case when n = 1 ,  showing the peculiar property of invariance 
in many unexpected ways. 
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